A Novel N-Methyltransferase in Arabidopsis Appears to Feed a Conserved Pathway for Nicotinate Detoxification among Land Plants and Is Associated with Lignin Biosynthesis.

نویسندگان

  • Wei Li
  • Fengxia Zhang
  • Ranran Wu
  • Lijia Jia
  • Guosheng Li
  • Yalong Guo
  • Cuimin Liu
  • Guodong Wang
چکیده

The Preiss-Handler pathway, which salvages nicotinate (NA) for NAD synthesis, is an indispensable biochemical pathway in land plants. Various NA conjugations (mainly methylation and glycosylation) have been detected and have long been proposed for NA detoxification in plants. Previously, we demonstrated that NA O-glucosylation functions as a mobilizable storage form for NAD biosynthesis in the Brassicaceae. However, little is known about the functions of other NA conjugations in plants. In this study, we first found that N-methylnicotinate is a ubiquitous NA conjugation in land plants. Furthermore, we functionally identified a novel methyltransferase (At3g53140; NANMT), which is mainly responsible for N-methylnicotinate formation, from Arabidopsis (Arabidopsis thaliana). We also established that trigonelline is a detoxification form of endogenous NA in plants. Combined phylogenetic analysis and enzymatic assays revealed that NA N-methylation activity was likely derived from the duplication and subfunctionalization of an ancestral caffeic acid O-methyltransferase (COMT) gene in the course of land plant evolution. COMT enzymes, which function in S-lignin biosynthesis, also have weak NANMT activity. Our data suggest that NA detoxification conferred by NANMT and COMT might have facilitated the retention of the Preiss-Handler pathway in land plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel N-Methyltransferase in Arabidopsis Appears to Feed a Conserved Pathway for Nicotinate Detoxification among Land Plants and Is Associated with Lignin Biosynthesis1[OPEN]

Wei Li, Fengxia Zhang, Ranran Wu, Lijia Jia, Guosheng Li, Yalong Guo, Cuimin Liu, and Guodong Wang State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Plant Cell and Chromosome Engineering and Center for Molecular Agrobiology, Institute of G...

متن کامل

Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis.

Lignin engineering is a promising strategy to optimize lignocellulosic plant biomass for use as a renewable feedstock for agro-industrial applications. Current efforts focus on engineering lignin with monomers that are not normally incorporated into wild-type lignins. Here we describe an Arabidopsis line in which the lignin is derived to a major extent from a non-traditional monomer. The combin...

متن کامل

A Comprehensive Overview on Valuable Tropane Alkaloids: Scopolamine, Atropine, and Hyoscyamine

Tropane alkaloids such as scopolamine (C17H21NO4), atropine (C17H23NO3) and hyoscyamine (C17H23NO3) are the most important plant secondary metabolites in the pharmaceutical industry due to anticholinergic activity, competition with muscarinic receptors and also treating different human diseases. Scopolamine, hyoscyamine and atropine are the most important tropane alkaloids used as anticoagulant...

متن کامل

An engineered monolignol 4-o-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis.

Although the practice of protein engineering is industrially fruitful in creating biocatalysts and therapeutic proteins, applications of analogous techniques in the field of plant metabolic engineering are still in their infancy. Lignins are aromatic natural polymers derived from the oxidative polymerization of primarily three different hydroxycinnamyl alcohols, the monolignols. Polymerization ...

متن کامل

Dual methylation pathways in lignin biosynthesis

Caffeoyl-coenzyme A (CoA) O-methyltransferase (CCoAOMT) has been proposed to be involved in an alternative methylation pathway of lignin biosynthesis. However, no direct evidence has been available to confirm that CCoAOMT is essential for lignin biosynthesis. To understand further the methylation steps in lignin biosynthesis, we used an antisense approach to alter O-methyltransferase (OMT) gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 174 3  شماره 

صفحات  -

تاریخ انتشار 2017